Cytochrome P4502C9-derived epoxyeicosatrienoic acids induce the expression of cyclooxygenase-2 in endothelial cells.
نویسندگان
چکیده
OBJECTIVE Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs). CYP2C9-derived EETs elicit endothelial cell proliferation and angiogenesis, but the signaling pathways involved are incompletely understood. Because cyclooxygenase-2 (COX-2) is involved in angiogenesis, we determined whether a link exists between CYP2C9 and COX-2 expression. METHODS AND RESULTS Human umbilical vein endothelial cells were infected with CYP2C9 sense or antisense adenoviral constructs. Overexpression of CYP2C9 increased COX-2 promoter activity, an effect accompanied by a significant increase in COX-2 protein expression and elevated prostacyclin production. The CYP2C9-induced expression of COX-2 was inhibited by the CYP2C9 inhibitor, sulfaphenazole, whereas 11,12-EET increased COX-2 expression. Overexpression of CYP2C9 and stimulation with 11,12-EET increased intracellular cAMP levels and stimulated DNA-binding of the cAMP-response element-binding protein. The protein kinase A inhibitor, KT5720, attenuated the CYP2C9-induced increase in COX-2 promoter activity and protein expression. Overexpression of CYP2C9 stimulated endothelial tube formation, an effect that was attenuated by the COX-2 inhibitor celecoxib. Identical responses were observed in cells preconditioned by cyclic strain to increase CYP2C expression. CONCLUSIONS These data indicate that CYP2C9-derived EETs induce the expression of COX-2 in endothelial cells via a cAMP-dependent pathway and that this mechanism contributes to CYP2C9-induced angiogenesis. Overexpression of cytochrome P450 (CYP) 2C9 in endothelial cells increased cAMP levels, stimulated the cAMP-response element-binding protein, and enhanced cyclooxygenase-2 (COX-2) promoter activity, protein expression, and prostacyclin production. CYP2C9 overexpression stimulated endothelial tube formation, which was attenuated by the COX-2 inhibitor celecoxib. Thus, COX-2 contributes to CYP2C9-induced angiogenesis.
منابع مشابه
Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors.
The endothelium regulates vascular tone through the release of a number of soluble mediators, including NO, prostaglandin I2, and endothelium-derived hyperpolarizing factor. Epoxyeicosatrienoic acids are cytochrome P450 epoxygenase metabolites of arachidonic acid. They are synthesized by the vascular endothelium and open calcium-activated potassium channels, hyperpolarize the membrane, and rela...
متن کاملEndothelium-derived epoxyeicosatrienoic acids and vascular function.
Epoxyeicosatrienoic acids (EETs) are epoxides of arachidonic acid generated by cytochrome P450 (CYP) epoxygenases. The activation of CYP epoxygenases in endothelial cells is an important step in the NO and prostacyclin-independent vasodilatation of several vascular beds, and EETs have been identified as an endothelium-derived hyperpolarizing factor. However, EETs also exert membrane potential-i...
متن کاملCytochrome p-450 epoxygenase products contribute to attenuated vasoconstriction after chronic hypoxia.
The systemic vasculature exhibits attenuated vasoconstriction following chronic hypoxia (CH) that is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization. We hypothesized that increased production of arachidonic acid metabolites such as the cyclooxygenase product prostacyclin or cytochrome p-450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) cont...
متن کاملEpoxyeicosatrienoic acids, TRP channels, and intracellular Ca2+ in the vasculature: an endothelium-derived endothelium-hyperpolarizing factor?
Epoxyeicosatrienoic acids (EETs) are cytochrome P450derived metabolites of arachidonic acid that function as endothelium-derived hyperpolarizing factors (EDHFs) in many species, including humans. Strictly speaking, an EDHF is a substance derived from endothelial cells that stimulates hyperpolarization of the underlying vascular smooth muscle cells (VSMCs) to elicit vasorelaxation. Although a ph...
متن کاملEndothelium-derived 2-arachidonylglycerol: an intermediate in vasodilatory eicosanoid release in bovine coronary arteries.
Acetylcholine stimulates the release of endothelium-derived arachidonic acid (AA) metabolites including prostacyclin and epoxyeicosatrienoic acids (EETs), which relax coronary arteries. However, mechanisms of endothelial cell (EC) AA activation remain undefined. We propose that 2-arachidonylglycerol (2-AG) plays an important role in this pathway. An AA metabolite isolated from bovine coronary E...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2005